В фильме “21” режиссёра Robert Luketic упоминается задача теории вероятности:
Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор ?
Правильным решением этой задачи является ответ: да, шансы выиграть автомобиль увеличиваются в два раза, если игрок будет следовать совету ведущего и изменит свой первоначальный выбор.
Парадокс Монти Холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу. Задача формулируется как описание гипотетической игры, основанной на американском телешоу «Let’s Make a Deal», и названа в честь ведущего этой передачи. Варианты решения и ключи к пониманию достаточно подробно описаны в Википедии.
Доказательство с помощью таблицы При проведении большого числа экспериментов машина должна обнаруживаться за каждой из дверей одинаковое количество раз, то есть очень близко к 1/3 от общего количества.
По законам распределения вероятности вы выберете неправильную дверь в 2 случаях из 3. Это означает, что в 2 из 3 случаев вы получите машину просто изменив решение. Таблица показывает, что вы, скорее всего, ошибётесь при первом выборе и в этом случае вы попадаете в две другие строки таблицы. А здесь уже вам покажут, какую дверь нужно выбрать.
Комментарии (0)
форма отправки комментария
Комментарии могут писать только авторизированные пользователи